

 1 version 3.6 - 7/18/2011

Open Protocol for Access

Control Identification and

Ticketing with privacY

Specifications

Version 3.7 | July 15
th
, 2011

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 2

Copyright © 2010, 2011, ActivIdentity

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

 express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 3

Document Control

Document Contributor(s)

Name Department

Eric Le Saint CTO Office

Dom Fedronic CTO Office

Steven Liu Contractor

Document Revision(s)

Date Author Version Revision Description

April 7 2010 ELS 2.7 Added persistent binding to OPACITY ZKM

April 9 2010 ELS 2.8 Added optimizations from EngTeam feedback

April 12 2010 ELS 2.8.1 Added corrected P1/P2 values in Opacity ZKM

April 22 2010 ELS 2.8.2 Align KDF with 800-56A : Added Key Confirmation

session key.

May 12 2010 ELS 3.0 Removed OPACITY-BASIC and OPACITY-FP and

OPACITY-ZKM-FS. Updated Opacity-ZKM APDU

interface

May 27 2010 ELS 3.3 Added SAM specifications. Described activation

mechanisms for SAM.

Added Illustrations

May 28 2010 ELS 3.4 Minor corrections

June 2

2010 ELS 3.4.1 Minor corrections + unwrap command

June 7

2010 ELS 3.4.2 unwrap command (cont.)

August 11, 2010 ELS 3.4.3 Corrected typos in protocol diagrams – Editorial review

August 12, 2010 DFE 3.4.4 Various definition edits, CVC definition edits including

GUID removal replaced by SN in the CardHolderName of

the CVC would include a cardSN instead of the GUID for

FS and nothing for ZKM.

August 13, 2010 DFE/ELS 3.4.5 Review Domain concept and SAM activation. 2.2.11.3.

introduce PIN based activation, add annex C on scalable

persistent binding and multiple domains.

August 24, 2010 ELS

3.5 OPACITY-ZKM optionally returns a unique 16-byte

globally unique identification code protected for

confidentiality. Alternatively the ICC CVC optionally does

not include an identifier tag 5F20.

August 31, 2010 ELS 3.5.1 OPACITY-ZKM optionally derives a single secure

messaging session key instead of 3. Aligned the Control

Byte (CB) bit field values.

September 15, 2010 ELS 3.6 OPACITY-ZKM optionally delivers an encrypted GUID.

July 15
th
, 2011 ELS 3.7 Renamed Forward Secrecy � Full Secrecy. Updated FS

Mode to comply with 800-56A with a sequence of two

C(1,1) steps.

Updated FS mode to allow the establishment of long

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 4

session keys.

Clarified in ZKM mode that CVC signature includes

GUID, although the GUID is returned encrypted and

outside the CVC in the Opacity ZKM response.

Related Document(s)

Reference Author Version Revision Description

[1] SP 800-56A NIST Rev1

(March

2007

[2] SP 800-57-1 NIST March

2007

[3] SP 800-108 NIST 2009

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 5

Table of Contents

Table of Contents ... 5

1.0 Overview... 7
1.1 Introduction .. 7
1.2 OPACITY Use cases ... 9
1.3 Acronyms ... 9
1.4 References...10

2.0 Features..10
2.1 OPACITY Modes ...10
2.2 OPACITY Common Features ..11

2.2.1 Simplified Key management ...11
2.2.2 Support Multiple Standard Cipher Suites..12
2.2.3 Simple Command flow..13
2.2.4 Secure credential transfer...14
2.2.5 Sessions Keys and Secure Messaging ..15
2.2.6 Resume Interruptions..15
2.2.7 Extreme Performance and Persistent Binding..15
2.2.8 Anti-tearing and Synchronization..16
2.2.9 Simplified SAM-based integration with Terminal ..16
2.2.10 Cross-Domain Authentication ...17
2.2.11 Key revocation ..18
2.2.12 Scalability ..19
2.2.13 Anti-theft : SAM Activation and Deactivation ..19

2.3 OPACITY Full Secrecy Mode (OPACITY-FS) ...20
2.3.1 Privacy ..20
2.3.2 Authentication ...20
2.3.3 Forward Secrecy...20

2.4 OPACITY - Zero Key Management Mode (OPACITY-ZKM) ...20

3.0 Common Specifications..22
3.1 Glossary ...22
3.2 Compliance with 800-56A..26

3.2.1 Key Agreement ...26
3.2.2 Key Derivation...26
3.2.3 Key Confirmation ..26

3.3 Host Initial State...26
3.4 ICC Initial State ..27

4.0 Base Protocol Specifications..27
4.1 OPACITY with Full Secrecy...28

4.1.1 Client Application Protocol Steps..29
4.1.2 SAM Protocol Steps..29
4.1.3 ICC Protocol Steps ...30

4.2 OPACITY with Zero Key Management (ZKM)...31
4.2.1 Client Application Protocol Steps..32
4.2.2 SAM Protocol Steps..32
4.2.3 ICC Protocol Steps ...32

5.0 Optimized Protocol Specifications..34
5.1 OPACITY with Full Secrecy (Optimized) ...34

5.1.1 Client Application Protocol Steps..35
5.1.2 SAM Protocol Steps..35
5.1.3 ICC Protocol Steps ...38

5.2 OPACITY with Zero Key Management (ZKM - Optimized) ...40
5.2.1 Client Application Protocol Steps..41

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 6

5.2.2 SAM Protocol Steps..41
5.2.3 ICC Protocol Steps ...43

6.0 ISO 7816-4 APDU Interface ...45
6.1 Host Control Byte (CBH)...45
6.2 ICC Control Byte (CBICC)..46
6.3 Cipher Suites Encoding ...46
6.4 OPACITY FS mode..47
6.5 OPACITY ZKM mode...51

7.0 ANNEX A - KDF Specifications ..55

8.0 ANNEX B - CVC Specifications..56

9.0 ANNEX C – Advanced Opacity Implementation...58
9.1 Large PB registries for SAMs...58
9.2 Multiple CVC signing keys ...58

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 7

1.0 Overview

1.1 Introduction

OPACITY is a suite of generic and high performance authentication and key agreement protocols for

securing transactions using contact or contactless ICCs for physical access, logical access or ticketing

applications.

Host

ICC SAM

Only one

Command for

robust

transactions

full privacy
in response

Simple,

lightweight

SAM Integration

Client
Application

Full protection

No Skimming

No Sniffing

No Man-in-the-middle

Forward secrecy

Contact or
contactless

interface

Opacity Overview

Figure 1. Opacity Overview

The protocol suite is designed with the following requirements:

• Standard cryptography

o Compliance with NIST cryptographic mandates SP 800-57 part1, NIST SP 800-56A, FIPS

140-2, and ability to fulfill NSA recommendation on the choice of cryptography (SUITE-B)

• Superior security.

o No identity leaks. Privacy protection is maximum, ie, both Personally Identifiable Information

and Unique Identifiers cannot be accessed by unauthorized parties,

o Forward secrecy: i.e. previously transmitted confidential information cannot be revealed in

the clear even if the static host authentication key has been compromised. This feature relies

on the ability to use ephemeral elliptic curve keys, and is an advantage over symmetric keys

or RSA based system.

o Mutual authentication. Host authentication to the card is either implicit or explicit. In implicit

mode, only the host with a trusted private key can decrypt the card output, so the card

receives assurance that only an authentic and authorized host can use the card output. In

explicit mode the host applies secure messaging on card commands, so the card receives

assurance that an authentic and authorized host has effectively received the card output.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 8

o Confidentiality and integrity: The protocol establishes session keys allowing secure

messaging for transporting application data or key exchange with confidentiality.

o Protection against Man-In-The-Middle attacks with proof of possession of static private keys.

• Exceptional performance

o No overhead - One short APDU command + one short APDU response.

o Elimination of unecessary CPU consuming artifacts, use of fixed length data elements for

optimal processing

o Robust to tearing / power off in any situation. Capability to resume broken contexts.

o Extremely fast and scalable session key establishment when the protocol is executed a

second time between a card and a host.

• Simple integration

o The specification covers both SAM and ICC interfaces.

o From the client application perspective, the integration is the simplest:

� A single ICC command with a SAM-generated public key and identification data.

Direct forwarding of ICC response to host SAM for processing. SAM returns

authenticated ICC identification data or ICC privilege information. The session keys

are established on both sides.

o Simple PKI key management and limited infrastructure costs.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 9

1.2 OPACITY Use cases

1111

OR

Mobile Phone

(NFC)

Logical Access

(local auth)

Desktops Kiosks

Physical Access

Doors

Opacity – Use cases

SE and Card

Management

Card Management

System

Transportation

Ticketing

Gates

Secure

Element

Contact or

Contactless

Smart Card

Logical Access

(remote auth)

Auth. Server

CONTACT or

CONTACTLESS

Insecure environment

FS

FS

Figure 2. Opacity Use Cases

Opacity is a suite of compact, flexible secure and fast authentication protocols with secure messaging

capability. It therefore covers most cases requiring card only authentication or mutual authentication or

secure messaging today. It also extends the use offered by current protocols by offering additional protection

mechanisms that prevent the risks of usage in contactless or unprotected environments.

SE Management:

- End-to-end post issuance management of smart card application or secure element in contact or

contactless environments

SE Applications:

- PKI contactless Authentication to the door or door controller for physical access. Use of end-to-end

secure messaging for contactless mutil-factor authentication, to confidentially transport a PIN or

biometrics to a Secure Element or PACS credential from a Secure Element via a contactless

communication.

- Contact or contactless PKI Authentication to Desktops, Laptops and Kiosks for logical access. Use of

secure messaging to provide an end-to-end protected path for document or transaction decryption

and signature using a secure element or a smart card.

- PKI-based contactless authentication for ticketing and mass-transit applications.

- PKI-based authentication to access to any remote service across insecure environments (i.e secure

access to the cloud). Use of end-to-end secure messaging to confidentially transport a PIN or

biometrics or PACS credential via a contact, contactless or other wireless communication.

1.3 Acronyms

• APDU: Application Protocol Data Unit

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 10

• CVC: Card Verifiable Credential

• EC: Elliptic Curve

• FS: Full Secrecy mode

• GICS: Generic Identity Command Set

• GUID: Globally Unique IDentifier

• ICC: Integrated Circuit Chip.

• PACS: Physical Access Control System

• SAM: Secure Authentication Module

• SM: Secure messaging

1.4 References

[1] NIST SP 800-56A – March 2007 - Recommendation for Pair-Wise Key Establishment Schemes Using

Discrete Logarithm Cryptography

[2] NIST SP 800-57-1 - March 2007 – Recommendation for key management

2.0 Features

The suite includes two modes of different strengths that can be applied to various use cases or eco-systems:

2.1 OPACITY Modes

Two modes are proposed to cover a very large range of use cases requiring secure transactions with secure

elements.

1. The Opacity Full Secrecy mode (OPACITY-FS) is optimized for contactless authentication

transactions between a Secure Element and a remote entity, when mutual authentication is

necessary or when it is necessary that the identity of the Secure Element or card holder is never

revealed to unauthorized parties. An external third-party without privilege should not be able to

associate the identity of the card holder to a transaction made with the card. Under this mode the

protocol protects end-to-end sensitive information that needs to be transported to or from the Secure

Element, and which remains sensitive and valuable after the transaction or the session is completed.

For instance in key management use cases, when the key material that is communicated must

remain protected for confidentiality at least during the life time of the key.

2. The Zero Key Management mode (OPACITY-ZKM) is a lightweight option best suited to protect

contact or contactless transactions when terminals are not capable of protecting static secrets or

supporting a hardware security module..the protocol is also best suited to support very fast PKI

authentication transactions as it only requires a single Elliptic-Curve Diffie_Hellman operation on the

chip.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 11

2.2 OPACITY Common Features

These characteristics apply to all modes of the protocol:

2.2.1 Simplified Key management

OPACITY Key management is simple. Each Opacity enabled ICC or Secure Element includes:

- Zero or one persistent EC private Key and its corresponding Card Verifiable Certificate (CVC).

- A list of CVC verification public EC keys for each domain. These keys are used for verifying the

CVC signatures of other opacity-enabled devices willing to communicate.

Since the EC key pairs may be generated on card there is no need to distribute secrets, key

ceremonies or involving master keys.

ICC
Da

Db

Dc

SAM

Private ICC

Auth Key

Dx

Dy

Dz

ICC CVC

Root public

keys of host

domains for

verifying

SAM CVCs

SAM CVC

Root public

keys of ICC

domains for

verifying

ICC CVCs

Private SAM

Auth Key

Opacity – Simple Key Management

Persistent keys to manage

Figure 3 - Opacity Simple Key management

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 12

2.2.2 Support Multiple Standard Cipher Suites

The protocol can be configured to support the following cipher suites:

FIPS 140-2 modes
Fast ZKM

only
FS/ZKM

Strong Key

transport
Strong FS

Government

Classified

Cipher Suite CS1 CS2 CS3 CS4 CS5

Channel Strength

(bits) 112 128 192 192 192

Encryption or MAC

(Session keys) AES128 AES128 AES 256 AES 192 AES256

ICC CVC Signature ECDSA 224 ECDSA 256 ECDSA 256 ECDSA 384 ECDSA 384

Host CVC Signature N/A ECDSA 256 ECDSA 384 ECDSA 384 ECDSA 384

ICC Key Agreement ECDH 224 ECDH 256 ECDH 256 ECDH 384 ECDH 384

Host Key Agreement ECDH 224 ECDH 256 ECDH 384 ECDH 384 ECDH 384

Hashing SHA 1 SHA 256 SHA 384 SHA 384 SHA 384

Nonces (per 800-56A) 16 bytes 16 bytes 24 bytes 24 bytes 32 bytes

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 13

2.2.3 Simple Command flow

All protocols of the Opacity Suite are optimized to be implementable as a single ICC command-

response transaction between a client application host and a Secure Element. It is possible to

authenticate the unique identitity of the Secure Element for instance a GUID or FASC-N, and

establish session keys on both sides in a single command. This challenge response paradigm

between the host and the ICC simplifies a lot the integration, reduces command processing and

communication overhead, and improves the robustness of the transaction.

Host

ICC SAM

Client
Application

Easy SAM

integration
Single ICC

Command -

response

Privacy-

protected

response

Opacity – Simple Command Flow

ICC response

forwarded to SAM

2

1

3

1. Generate SAM key pair 2. Authenticate SAM to ICC 3.Authenticate ICC to SAM
protectedclear forward

Figure 4 – Simple Command flow

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 14

2.2.4 Secure credential transfer

The OPACITY protocol can be used to securely transfer an ID credential from the Secure Element or

ICC to the client application, as part of the confidentially protected response to the OPACITY

command. The client application receives enough inforamtion to authenticate the credential for

further use, such as for physical access. The credential is never exposed at the card edge in the

clear, and appears as a random byte field while communicated, it cannot be used to identify the card

or its holder.

Host

ICC SAM

Client

Application

ID Credential
in CVC (e.g.

GUID)

Authenticated ID

Credential (e.g. GUID)

Privacy-protected

response

Opacity – Secure Credential Transfer

protectedclear forward

Figure 5. Secure Credential Transfer

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 15

2.2.5 Sessions Keys and Secure Messaging

The OPACITY protocol establishes either one or three AES session keys, available on both host and

ICC sides. The session keys can be used to protect further commands and responses to and from

the ICC using a secure messaging (SM) mechanism such as with ANSI GICS part-1. The session

keys are meant to protect the ICC commands for confidentiality, integrity of the command and

integrity of the response.

The secure messaging maintains the privacy protection and security obtained during the key

establishment.

Interoperable implementations should follow the ISO 7816-4 Annex B secure messaging such as ISO

24727-4 or ANSI GICS-1 Secure Messaging.

Host

ICC
SAM

Client
Application

Secure messaging

Full protection

command and response

Trusted application

data eg. PIN

Trusted application

data (eg. Biometric

Template)

Session

Keys (AES)

Opacity – Secure Messaging
ICC Private

Auth Key
ICC

CVC

Clear

Protected

Forward

OPACITY

protocol

Figure 6 Opacity – Secure messaging

2.2.6 Resume Interruptions

OPACITY is designed to resume interruptions when the card leaves the communications field

prematurely and then returns. The terminal issues a new request as if a new card is presented, i.e.

with a new nonce and/or ephemeral public key. When the card recognizes that the host CVC is

identical to the one of the previous failed connection, the ICC can resume the processing at the point

where it failed.

2.2.7 Extreme Performance and Persistent Binding

OPACITY is optimized to rapidly initiate transactions between an ICC and host SAM (or TPM, HSM,

..) that have already exchanged key material. Shared secrets and one-time card identifiers for use in

the next transaction are calculated and stored on each side.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 16

This feature is actually a device pairing or “persistent binding” between a host SAM and a ICC or

Secure Element. It allows both sides to immediately derive new session keys for authentication or

secure messaging from previously registered binding data related to that unique ICC-host

relationship. This allows to skip all Elliptic Curve steps, and can be considered as a method to

establish unique static symmetric keys in secue elements without master keys or key ceremonies..

ICCA SAMB

Dx

Dy

Dz

ICC A ZABSAMB ZAB

Da

Db

Dc

@ @
@ @

SAMB

ICCA

Secure

messaging

Full protection

Opacity – Persistent Binding

Not

Used

Not

Used

Session

Key

derivation

Persistent

binding table

PB

table

entry

Shared

Secret
Session

Key

Figure 7 – Persistent Binding

2.2.8 Anti-tearing and Synchronization

De-synchronization of persistent binding records may occur when the ICC or SAM registry tables are

unilaterally erased for security or other reasons. Another de-synchronization situation is when the

OPACITY response from the ICC never reaches the host although the ICC has newly registered a

shared secret. The OPACITY protocol allows the SAM and ICC to detect and recover from de-

synchronization.

2.2.9 Simplified SAM-based integration with Terminal

The OPACITY protocol workflow is quite simple from an integrator’s perspective (see figure 4). The

Client application calls the SAM to generate an ephemeral EC key pair, sends an authentication

command to the ICC including the public ephemeral key and the SAM ECC. Then it forwards directly

the authentication response of the ICC as a second authentication command to the SAM. If

successful, then session keys are established on both sides. The client application builds APDU

commands, calls the SAM to wrap them and then sends the wrapped command to the ICC.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 17

2.2.10 Cross-Domain Authentication

To enable the OPACITY protocol, each host is equipped with a SAM protecting a private host

authentication key. The host authentication key has a companion credential that is a Card Verifiable

Credential described in Annex B. The host shall be capable of transmitting the CVC.

The host CVC is signed with the “root domain private key” which provides some assurance that the

binding between the host and the authentication key is approved by the domain authority. A “domain”

is a set of hosts and underlying system managed under the same authority. OPACITY enabled cards

must include the root domain public key to enforce host CVC verification and host authentication. It is

assumed that an OPACITY enabled card may potentially interact with multiple domains, and

therefore include multiple root domain public keys.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 18

2.2.11 Key revocation

OPACITY role is to protect transactions and authenticate data transported to and from the ICC in any

environment. Its role is not to enforce PKI authorization or revocation on behalf of access control

systems.

We assumed that the OPACITY keys are unique authentication keys, and for instance are generated

on the ICC. These keys are never shared. Obviously ICCs that have been issued may be stolen or

operated in unauthorized contexts.

This proposal recommends that:

1) The life cycle of the Opacity authentication keys is managed via the ICC post-issuance system in

coordination with the life of the card. In particular, the ICC management system shall be able of

regenerating the OPACITY static key pair, installing a corresponding CVC, and updating the list

of authorized root domain public key.

2) In case of theft, the security of the OPACITY-based system relies on the prompt declaration of

loss or theft to the Issuer, service provider or local IT. This results in a) the actual revocation of

the application credentials and associated rights (CHUID, PIV Auth Cert, etc.), which are not the

OPACITY credentials, and b) results in updates the corresponding access control backend.

3) The revocation of Opacity CVCs is not expected in the current version of the specification. Note

that OPACITY PKI role is to protect and authenticate the transported information rather than

provide authorization or revocation information.

4) It is also recommended that the list of valid CVC validation public keys is regularly updated to

phase out revoked cards.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 19

2.2.12 Scalability

When a large number of ICCs needs to be registered in a SAM Persistent binding table, the time

needed to find the entry referencing the shared secret with the correct ICC index may be significant.

The OPACITY specification allows the client application to quickly determine or discover the PB table

entry indexes, so the SAM can immediately access the PB table entry contents.

SAMB

SAMC

PBaddress ZAC

@ @

Opacity – Scalable Persistent Binding

Client

Application C
ICCA

ICC A PBaddress

@ @

Large PB

table
(>100 records):

Indexed search

on Host

No search

Direct access on

SAM

ICC A ZAB

@ @

Small PB

table
(<100 records)

Indexed search

on SAM

Secret in

SAM

Client

Application B

Figure 8. Opacity Scalable Persistent Binding

2.2.13 Anti-theft : SAM Activation and Deactivation

SAMs can only be active in an approved context of use. An attacker controlling a SAM may be able

to capture sensitive identity information.

The proposed design includes a flexible and enforceable SAM activation and SAM deactivation

mechanism.

The SAM activation mechanism consists of a successful OPACITY authentication with a trusted

“administrator ICC” which CVC is signed with a domain administrator root private key. The

corresponding domain administrator root public key is stored on the SAM.

An Administrator ICC can be either a personal card or secure element of a mobile phone which

communicates to the SAM via the client application as a regular OPACITY enabled card.

An Administrator ICC can also be a secure element attached to an online connected service,

allowing real-time control on SAMs.

A SAM which has been reset or powered on is in deactivated state. A deactivated SAM requires a

successful OPACITY transaction with an administrator ICC prior to allow any other OPACITY

transaction with other ICC types.

To deactivate a SAM, it must either be:

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 20

- powered off then on

- reset

- SAM application is deselected

- Internal OPACITY transaction counter reaches a maximum. The counter is reset upon activation.

2.3 OPACITY Full Secrecy Mode (OPACITY-FS)

2.3.1 Privacy

Not identifiable - The Opacity protocol does not divulge any identifier associated to a particular ICC

or card holder during an Opacity session.

Not traceable - the Opacity protocol does not divulge any data that allows the correlation of two

protocol executions with same ICC during an Opacity session.

2.3.2 Authentication

Opacity explicitly authenticates the ICC to the host using FIPS-approved EC-based authentication

protocols described in NIST SP 800-56A. The ICC delivers a Card Verifiable Credential to the host,

which allows the host to verify the binding between the ICC identifier and the ICC EC private key.

The ICC identifier can be chosen to be the same value registered in the access control system (for

instance, GUID or FASC-N).

Opacity may either implicitly or explicitly authenticate the host to the ICC, using FIPS-approved EC-

based authentication protocols described in NIST SP 800-56A.

- Implicit authentication means that the ICC validates the CVC but does not expect a response from

the host showing that the host actually owns the private key corresponding to that CVC. However,

only an authentic host will be able to decipher the ICC response.

- Explicit authentication means that the ICC actually receives at least an additional command from

the host that proves to the ICC that the host owning the private key is present...

2.3.3 Forward Secrecy

Forward secrecy provides assurance that the encrypted data that is transferred cannot be decrypted

after the communication has ended and the session keys and the ephemeral EC key pairs are

zeroized. This mode is particularly useful when Opacity is used for SM encryption. Specifically, with

forward secrecy, the SM session keys cannot be reproduced and the transported data cannot be

decrypted even if both the original persistent key material and the original communication data have

been compromised or captured from the Host.

Note that the protocol does not implement “Perfect Forward Secrecy”, ie. if both unique key pairs on

the ICC and SAM are known, the session keys can be reproduced.

2.4 OPACITY - Zero Key Management Mode (OPACITY-ZKM)

Opacity has an operating mode that extremely reduces the key management requirement for

terminals with no Secure Access Modules available locally or remotely, as is the case with legacy

Physical Access Control infrastructure.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 21

9

OPACITY ZKM – Fast Contactless Transactions

ICC HOST / SAMCommand

ResponseEC Key Pair

cvc

CONTACT or

CONTACTLESS

cvc signature

verification key

Figure 10 –

Opacity-ZKM managed Keys

This mode does not require static terminal keys except for the root Public Key to verify the Card

Verifiable Certificate signature. It provides Card Authentication but not Terminal Authentication, and

is to be used in environments where terminals are known and trusted.

In this mode, the protection against identity leaks is achieved by encrypting the identification data in

the response.

The basic ZKM authentication protocol is an ICC internal authentication protocol and key agreement

using EC cryptography. The initiator generates an ephemeral key pair but has no static key pair; the

responder has only a static key pair

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 22

3.0 Common Specifications

This section is applicable to OPACITY FS and ZKM modes.

3.1 Glossary

Name Comment Format Max Size (in bytes)

OTIDICC ICC anonymous identifier, valid one

time

Binary 8 bytes

IDsICC Static, non anonymous ICC

identifier. Truncated Hash of CICC

Binary 8 bytes

GUID Unique Cardholder or device

identifier.

Binary 16 bytes

CICC Card Verifiable Credential

authenticating QsICC

CVC - see Annex B See Annex B

CICC* Confidential Card Verifiable

Credential for privacy, derived from

CICC as follows:

- The GUID TLV data

element of CICC has been

replaced with TL data

element (T=0x5f20 [GUID

Tag], L=0)

All other data elements and their

order are identical to those in CICC

CVC – see Annex B See Annex B

QrootICC Root public Key to verify the

ECDSA signature of ICC

authentication credential CICC

 P-224: 57

P-256: 65

P-384: 97

QsICC [dsICC], ICC authentication public key,

matched with the corresponding

private key: dsICC

 P-224: 57

P-256: 65

P-384: 97

, QeICC [deICC] ICC ephemeral public key, matched

with the corresponding ephemeral

private key: deICC

 P-224: 57

P-256: 65

P-384: 97

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 23

Name Comment Format Max Size (in bytes)

IDsH Terminal or host identifier. Subject

nameof CH

Binary 8 bytes

CH Host Card Verifiable Credential

(CVC) binding QsH and IDsH.

CVC See Annex B

QrootH root public key for verifying host

CVCs on the ICC

Binary P-224: 57 bytes

P-256: 65 bytes

P-384: 97 bytes

QeH , [deH], Host ephemeral public key,

matched with the corresponding

ephemeral private key: deH

 P-224: 57 bytes

P-256: 65 bytes

P-384: 97 bytes

QsH [dsH], static host ECC public key,

matched with the corresponding

host static private key: dsH

Binary P-224: 57 bytes

P-256: 65 bytes

P-384: 97 bytes

NH Client Application nonce Binary 16 bytes per 800-56A

(Section 5.4)

NICC ICC nonce Binary 16 bytes per 800-56A

(Section 5.4)

SKMAC , SKENC,

SKCFRM

Secure Messaging Session Keys According to algorithm:

AES 128: 16 bytes

AES 192: 24 bytes

AES 256: 32 bytes

T8(Data) Leftmost 8-byte Truncation Method Binary Extract the leftmost 8

bytes of the argument

“Data”.

T16(Data) Leftmost 16-byte Truncation

Method

Binary Extract the leftmost 16

bytes of the argument

“Data”.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 24

Name Comment Format Max Size (in bytes)

ENCRYPT(Algo,

Key, Data)

Encrypt Data with Key using

Algorithm ‘Algo’.

N/A N/A

KDF (Z, len, info) Key Derivation Function Specified

in Annex A

N/A N/A

EC_DH ECC based key agreement

functions, specified in 800-56A

N/A N/A

K1, K2 Intermediate Shared secrets (AES

128)

Binary 16 bytes

Info According to 800-56A

specifications. See Annex A – KDF

Specification

N/A N/A

len According to 800-56A

specifications. See Annex A – KDF

Specification

Value: (2+x)*y

Where:

x=1 or 3 (nb authentication keys)

y: length of chosen AES session

keys in bytes

Binary

1 byte

KDFHashAlgorithm SHA-256 or SHA-224 or SHA-384

C-MAC NIST 800-38B AES-128 based

MAC algorithm

CBICC Protocol Control Byte returned by

ICC. See section 0

- PB: Host was found in

ICC PB registry

- NO_PB: Persistent

binding has not been

used for this

transaction

- PB_INIT: ICC has set a

new Persistent binding

entry for the host (re-

computed ECDH)

- ENC_GUID: the

encrypted GUID is

present in the response

Binary 1 byte

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 25

Name Comment Format Max Size (in bytes)

- CLR_GUID. The GUID

is returned as part of

the CVC

- ONE_SK: ICC has

established only one

session key for Secure

messaging,

- THREE_SK: ICC has

established Three

session keys for

Secure Messaging.

CBH Protocol Control Byte sent by host:

- PB: ICC may use

Persistent binding if

supported

- NO_PB: No persistent

binding supported by

this host: ICC may not

use persistent binding

- PB_INIT: ICC shall

reset Persistent binding

entry for the host (re-

compute ECDH)

- RET_GUID: ICC

includes the encrypted

GUID in the response

- ONE_SK: Request ICC

to establish only one

session key

THREE_SK: ICC has

established Three

session keys for

Secure Messaging

Binary 1 byte

PBaddress This value can be set by the client

application. When non-null, this

value indicates where the

Persistent Table entry record

[OTID, Z] or [IDsicc, Z] need to be

located on the SAM, thus avoiding

any search on the SAM.

Integer 4bytes.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 26

3.2 Compliance with 800-56A

It is expected that implementations of OPACITY comply with 800-56A:

3.2.1 Key Agreement

- Opacity FS follows a sequence of two C(1,1) steps.

- Opacity ZKM corresponds to one C(1,1) steps

- All key establishment prerequisites must be executed on both host and ICC side prior to

executing the protocol. Each party shall have an authentic copy of the same set of domain

parameters, D. And obtain assurance of the validity of these parameters.

- For OPACITY-FS:

o the prerequisites for the C(1,1) ECC CDH mode ([1], section 6.2.2 – Prerequisites) must

be applied.

o the requirements of 6.2.2.2 Full Unified Model, C(1,1, ECC CDH) must be applied.

- For OPACITY-ZKM
o the prerequisites for the C(1,1) ECC CDH mode ([1], section 6.2.2 – Prerequisites) must

be applied.

o the requirements of 6.2.2.2 One Pass Diffie-Hellman, C(1,1, ECC CDH) must be applied.

3.2.2 Key Derivation

- The Key Derivation Function is the concatenation KDF as specified in NIST SP800-56A (§ 5.8.1).

3.2.3 Key Confirmation

- The Key Confirmation Follows section 8.4.9 “C(0, 2) Scheme with Unilateral Key Confirmation

Provided by V to U” in NIST SP 800-56A

3.3 Host Initial State

Opacity needs to be enabled on the host side as follows:

Setup a client application executing on the host IDsH, equipped with a HSM, SAM or TPM to implement the

cryptographic functions, and to communicate with a smart card or secure element IDsICC.

The client application has access to a unique static private EC authentication key dsH. The corresponding

Card Verifiable Credential CH includes IDsH and the matching public key QsH

According to 800-56A Figure 1 [1], the host must execute all key establishment preparations prior to

launching the protocol.

The client application has access to a registry of Host-ICC pairing records needed to support the persistent

binding capability. Each record includes:

• OTIDICC, the ICC record identifier.

• Z, a one-time shared secret, valid for the next communication.

The registry is accessed with OTIDICC

If the ICC authentication settings are variable, the client application ensures that the ICC authentication

method and parameters are set:

The client application has access to the root ICC public key (QrootICC) to validate ICC authentication

credentials, CICC and card authentication public key (QsICC)

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 27

3.4 ICC Initial State

Opacity needs to be enabled on the ICC side as follows:

- QrootH , CVC root public key for on card verification of the client CVC. QrootH may be determined with

the client CVC Issuer Identification Number

The ICC has access to a registry of host pairing records needed for the persistent binding capability. Each

record includes:

• IDsH the host identifier and index.

• OTIDICC, the one-time ICC identifier that was used during the last session.

• Z, a one-time shared secret, only valid for the next communication.

The card application has access to a card authentication key (dsICC) and a Card CVC (CICC) including QsICC.

According to 800-56A Figure 1 [1], the ICC must execute all key establishment preparations prior to

launching the protocol.

4.0 Base Protocol Specifications

This section describes the protocol for educating purpose. All optimizations are defined in section 5,

Optimized Protocol Specifications.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 28

4.1 OPACITY with Full Secrecy

B. ICC Authenticate Request

Send CH, QeH

Return QeH

A. Ask SAM to generate an

ephemeral key pair

C. SAM Authenticate Request

Send

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 29

4.1.1 Client Application Protocol Steps

4.1.2 SAM Protocol Steps

Step # Description Comment

S1 GEN_KEY_PAIR (deH; QeH)

Return QeH

S6 QeIcc = OTIDICC Validate QeIcc belongs to EC domain then OTIDICC is QeIcc verify that QeICC

corresponds to the elliptical domain

parameters

S7 Z1= EC_DH (dsH, QeICC) Compute the ECDH shared secret Z1

S8 K1||K2 = KDF(Z1; len, info (IDsH, QeICC)) Generate K1

S9 CICC = DECRYPT (AES, K1 , OpaqueDataICC)

S10 Validate CICC, Extract QsICC and ICCcred from CICC

S11 Z = EC_DH (deH, QsICC) Concatenation per 800-56A C(2,2)

S12 Zeroize Z1, K1

S14 SKCFRM || SKMAC || SKENC || NextZ || NextOTIDICC =

KDF (Z, len, info (IDsH, T8(OTIDICC), T16(QeH), K2))

Compute the session keys, as well as the

shared secret for the next PB session

S15 Zeroize Z, K2, deH, QeH,

S16 Check AuthCryptogramICC =

 C-MAC (AES, SKCFRM,“KC_1_V”||T8(OTIDICC)||

IDsH|| T16(QeH))

Authenticate ICC by verifying it also

possesses the session key

S17 If Check Fails return AUTH_ERROR

S18 Zeroize SKCFRM Per 800-56A Section 5.8

S19 Return AUTH_OK The authentication status is returned to the

Step # Description Comment

A. Request to SAM to generate an ephemeral EC key

pair

This is the initial step of the protocol. It

always occurs.

B. Authentication Request to ICC

Send CH, QeH

The client application challenges the ICC to

authenticate.

C. Authentication Request to SAM

Send OpaqueDataICC || AuthCryptogramICC ||

OTIDICC

The client application forwards the ICC

response to the SAM to authenticate the

ICC. Only an authentic SAM can decipher

the ICC response.

E. Use secure messaging with SKMAC and SKENC

for additional commands

The Client application coordinates the

exchange of session key - protected

commands between the SAM and the ICC.

The SAM is used to wrap commands.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 30

Step # Description Comment

client application

4.1.3 ICC Protocol Steps

Step # Description Comment

C1 Validate CH by QrootH Using (QrootH), The card application verifies

the Client CVC (CH), Also verify the EC

curve parameters per 800-56A

C2 Extract IDsH, QsH assess the binding between the unique

Host ID (IDsH) and the CVC public key

(QsH).

C3 Look for IDsH in PB registry The ICC scans for IDsH in the registry.

C4 Validate QeH belongs to EC domain. verify the EC curve parameters per 800-56A

C5 GEN_KEY_PAIR (deICC; QeICC) The ICC generates ephemeral ECC key

pair (deICC;QeICC)

C6 Z1 = EC_DH (deICC;QsH) Generate the shared secret

C7 K1 || K2 = KDF (Z1; len, info (IDsH, QeICC))

C8 OpaqueDataICC = ENCRYPT (AES, K1 , CICC)

C9 OTIDICC = QeICC

C11 Z = EC_DH (dsICC ;QeH) Concatenation per 800-56A C(2,2)

C12 Zeroize Z1,K1

C16 SKCFRM || SKMAC || SKENC || NextZ || NextOTIDICC =

KDF (Z, len,info (IDsH, T8(OTIDICC), T16(QeH), K2))

Compute the new session keys, the shared

secret and the one-time identifier for the

next session

C17 Zeroize Z, K2, deICC, QeICC,

C18 AuthCryptogramICC = C-MAC (AES, SKCFRM,

 KC_1_V” || T8(OTIDICC) || IDsH|| T16(QeH))

Compute return cryptogram allowing ICC

authentication, showing it owns the session

key to the client application

C19 Zeroize SKCFRM Per 800-56A Section 5.8

C23 Return OpaqueDataICC || AuthCryptogramICC ||

OTIDICC

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 31

4.2 OPACITY with Zero Key Management (ZKM)

 .

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 32

4.2.1 Client Application Protocol Steps

4.2.2 SAM Protocol Steps

Step # Description Comment

S1 GEN_KEY_PAIR (deH; QeH)
Return QeH

The SAM generates an EC Key Pair.

S2. IDsICC = T8(HASH(CICC)) The ICC returns its CVC . The actual ICC persistent

binding table entry to use is T8(HASH(CICC))

S7. Extract QsICC from CICC and Validate

 QsICC belongs to EC domain.

Extract the static ICC public key from the CVC

S8. Z = EC_DH (deH;QsICC) Compute the shared secret.

S9. Zeroize deH Destroy ephemeral host private key.

S11. SKCFRM || SKMAC || SKENC || SKRMAC || NextZ =

 KDF (Z, len,info (IDsICC, IDsH , T16(QeH),NICC))

Compute the session keys and Next Z.

NextZ length is 16bytes,

S12. Zeroize Z, Destroy Z.

S13. Check (AuthCryptogramICC ==

 C-MAC (SKCFRM, “KC_1_V” || IDsICC || IDsH || T16((QeH))

If Check Fails return AUTH_ERROR

Check key confirmation cryptogram. Return

authentication error if verification fails.

S14. Zeroize SKCFRM Destroy session key used for key confirmation

S18 Return AUTH_OK ICC Authentication succeeded..

4.2.3 ICC Protocol Steps

Step # Description Comment

C1 IDsICC = T8(HASH(CICC)) Prepare ICC ID value– may be pre-computed

C3. Validate QeH belongs to EC domain. Check ephemeral public key validity

C4. Z = EC_DH (dsICC;QeH) Compute shared secret

C8. Generate Nonce NICC

C9. SKCFRM || SKMAC || SKENC || SKRMAC || NextZ =

 KDF (Z, len,info (IDsICC, IDsH , T16(QeH),NICC))

Compute session keys and shared secret for next

session.

C10. Zeroize Z Destroy current shared secret.

C11. AuthCryptogramICC =

 C-MAC (SKCFRM , “KC_1_V” || IDsICC || IDsH ||T16(QeH))

Compute key confirmation cryptogram per 800-56A.

C12. Zeroize SKCFRM Destroy session key sued to compute the KC

cryptogram

C16. Return NICC || AuthCryptogramICC || CBICC || iccID Return ICC response

Step # Description Comment

A. Ask SAM to generate an ephemeral key pair This is the initial step of the protocol. It always occurs.

B. ICC Authenticate Request

Send IDsH, QeH,

The client application challenges the ICC to

authenticate.

C. SAM Authenticate Request

Send NICC || AuthCryptogramICC || iccID

The client application forwards the ICC response to the

SAM to authenticate the ICC. Only an authentic SAM

can decipher the ICC response.

OPACITY-ZKM complete.

E. Use secure messaging with SKMAC and SKENC

for additional commands

The Client application coordinates the exchange of

session key - protected commands between the SAM

and the ICC. The SAM is used to wrap commands.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 33

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 34

5.0 Optimized Protocol Specifications

5.1 OPACITY with Full Secrecy (Optimized)

B. ICC Authenticate Request
Send CH, QeH, CBH

Return QeH

Look for IDsH in PB registry. (C3)

if IDsH is not registered OR CBH != PB

else
Obtain Z, OTIDICC from IDsH in PB registry (C13)

Generate Nonce NICC (C14)

OpaqueDataICC = NICC, K2 = NICC (C15)

if CBH != NO_PB and ICC supports PB. AND [IDsH is not registered or CBH

== PB_INIT]
Register Z=NextZ for IDsH . (C20)

if (CBICC != PB) CBICC = PB_INIT (C21)
Else

CBICC = NO_PB (C22)

Look for OTIDICC in PB registry. Use PBaddress if not NULL (S3)

If IDsICC is not registered AND CBICC == PB
Zeroize deH (S4)

return CBH= PB_INIT (Restart OPACITY) (S5)
If IDsICC is not registered AND CBICC != PB

If IDsICC is registered

= OpaqueDataICC
Obtain Z and ICCcred from (or use PBaddress) in PB

registry.

Zeroize SKCFRM

If CBICC != PB_INIT

Register ICCcred and Z=NextZ for OTIDICC = NextOTIDICC

Compute PBaddress
CBH = PB

Else
PBaddress = NULL

CBH= NO_PB
Return CBH ICCcred || PBaddress

A. Ask SAM to generate an ephemeral key

pair

C. Check if record [OTID, PBadress] exists.

Otherwise determine PBaddress for new
record.

D. Send SAM Authenticate Request:
OpaqueDataICC || AuthCryptogramICC ||

CBICC || OTIDICC || PBaddress

E. If CBH== PB_INIT (Restart OPACITY)
F. Record [OTID, PBaddress]

(See

section 3.5)

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 35

5.1.1 Client Application Protocol Steps

5.1.2 SAM Protocol Steps

Step # Description Comment

S1 GEN_KEY_PAIR (deH; QeH)

Return QeH

S3 Look for OTIDICC in PB registry. Use PBaddress if

not NULL

The client application scans for OTIDICC in

the registry in PBaddress is NULL.

Otherwise the PB entry van be found at

PBaddress * sizeof (PB entry)

If IDsICC is not registered AND CBICC == PB If OTIDICC is not found,

S4 Zeroize deH

Step # Description Comment

A. Ask SAM to generate an ephemeral key pair

This is the initial step of the protocol. It

always occurs.

B. Authenticate Request to ICC

Send CH, QeH, CBH

The client application challenges the ICC to

authenticate.

C Determine PB offset based on OTID.

Search locally among [PBaddress, OTID]

records. If OTID is not found, determine

best PBaddress value (first free record slot).

Feature can be disabled with PBaddress =

NULL.

D D. Send Authenticate Request to SAM

OpaqueDataICC || AuthCryptogramICC || CBICC ||

OTIDICC || PBaddress

The client application forwards the ICC

response to the SAM to authenticate the

ICC. Only an authentic SAM can decipher

the ICC response.

E. If CBH == PB_INIT OR CBH == PB and

AUTH_ERROR (Restart OPACITY)

F Record [OTID, PBaddress] using the ICC output

for faster search

The next time the same ICC is presented to

the client application, the client application

finds its[OTID, PBaddress] stored locally.

PBaddress is then communicated to SAM

which does not need to search OTID in the

PB table.

G. Use secure messaging with SKMAC and SKENC

for additional commands

The Client application coordinates the

exchange of session key - protected

commands between the SAM and the ICC.

The SAM is used to wrap commands.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 36

Step # Description Comment

S5 return CBH = PB_INIT (Restart OPACITY)

 (S5)

If IDsICC is not registered AND CBICC != PB

S6 QeIcc = OTIDICC Validate QeIcc belongs to EC

domain

then OTIDICC is QeIcc verify that QeICC

corresponds to the elliptical domain

parameters

S7 Z1= EC_DH (dsH, QeICC) Compute the ECDH shared secret Z1

S8 K1 || K2 = KDF(Z1; len, info (IDsH,

T16(QeICC)))

Generate K1

S9 CICC = DECRYPT (AES, K1 ,

OpaqueDataICC)

S10 Validate CICC, Extract QsICC from CICC

S11 Z = EC_DH (deH, QsICC)

S12 Zeroize Z1, K1

If IDsICC is registered OTIDICC has been found in the registry

 K2 = OpaqueDataICC

S13 Obtain Z from OTIDICC in PB registry. Z can be found using OTIDICC as Index.

Continue

S14 SKCFRM || SKMAC || SKENC || SKRMAC || NextOTIDICC ||

NextZ =

KDF (Z, len, info (IDsH, T8(OTIDICC), T16(QeH), K2))

Compute the session keys, as well as the

shared secret for the next PB session

Note that NextZ is only used when the condition (S19):

CBICC == PB_INIT is TRUE. Next Z does not need to

be computed otherwise.

S15 Zeroize K2, Z, deH, QeH,

S16 Check AuthCryptogramICC =

 C-MAC (AES, SKCFRM,“KC_1_V”||T8(OTIDICC)||

IDsH|| T16(QeH))

Authenticate ICC by verifying it also

possesses the session key

S17 If Check Fails return AUTH_ERROR

S18 Zeroize SKCFRM Per 800-56A Section 5.8

If CBICC == PB_INIT

S19 Register Z=NextZ , ICCcred for OTIDICC =

NextOTIDICC

Use PBaddress to determine where the new

PB entry needs to be stored.

The Client Application stores NextZ and

ICCcred in the binding record storage,

using NextOTIDICC as Index. It erases the

previous entries (Z, OTIDICC)

The offset in SAM memory is PBaddress *

sizeof (PB entry)

S20 CBH = PB

Else

S21 CBH= NO_PB

S22 Return CBH || OTID || PBaddress Return information that the client

application may use to determine the

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 37

Step # Description Comment

location of PB records based on OTID.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 38

5.1.3 ICC Protocol Steps

Step # Description Comment

C1 Validate CH by QrootH Using (QrootH), The card application verifies

the Client CVC (CH), Also verify the EC

curve parameters per 800-56A

C2 Extract IDsH, QsH assess the binding between the unique

Host ID (IDsH) and the CVC public key

(QsH).

C3 Look for IDsH in PB registry The ICC scans for IDsH in the registry.

if IDsH is not registered OR CBH != PB If IDsH is not found in the PB table, execute

a regular OPACITY-FS key agreement.

C4 Validate QeH belongs to EC domain. verify the EC curve parameters per 800-56A

C5 GEN_KEY_PAIR (deICC; QeICC) The ICC generates ephemeral ECC key

pair (deICC;QeICC)

C6 Z1 = EC_DH (deICC;QsH) Generate the shared secret

C7 K1 || K2 = KDF (Z1; len, info (IDsH,

T16(QeICC)))

Use ICC entropy

C8 OpaqueDataICC = ENCRYPT (AES, K1 , CICC)

C9 OTIDICC = QeICC

C10 NICC = NULL

C11 Z = EC_DH (dsICC ;QeH)

C12 Zeroize Z1,K1

if IDsH is registered AND CBH == PB If IDsH is found in the PB table, use the

registry to rcover the previously stored

shared secret

C13 Obtain Z, OTIDICC from IDsH in PB registry Using IDsH as index, obtain Z, OTIDICC from

the registry

C14 Generate Nonce NICC The card generates secret nonce NICC

C15 OpaqueDataICC = NICC , K2 = NICC

Continue

C16 SKCFRM || SKMAC || SKENC || SKRMAC || NextOTIDICC ||

NextZ =

 KDF (Z, len,info (IDsH, T8(OTIDICC), T16(QeH), K2))

Compute the new session keys, the shared

secret and the one-time identifier for the

next session

Note that NextZ is only used when the condition (C19):

if CBH != NO_PB and ICC supports PB. AND [IDsH is

not registered or CBH == PB_INIT]

. Next Z does not need to be computed otherwise.

C17 Zeroize K2, Z, deICC, QeICC,

C18 AuthCryptogramICC = C-MAC (AES, SKCFRM, Compute return cryptogram allowing ICC

authentication, showing it owns the session

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 39

Step # Description Comment

 KC_1_V” || T8(OTIDICC) || IDsH|| T16(QeH)) key to the client application

C19 Zeroize SKCFRM Per 800-56A Section 5.8

if CBH != NO_PB and ICC supports PB. AND [IDsH is not registered or CBH ==

PB_INIT]

C20 Register Z=NextZ and OTIDICC = NextOTIDICC

for IDsH

The ICC stores NextZ and NextOTIDICC in

the binding record storage, using IDsH as

Index. It erases the previous entries (Z,

OTIDICC)

C21 if (CBICC != PB) CBICC = PB_INIT

Else

C22 CBICC = NO_PB

C23 Return OpaqueDataICC || AuthCryptogramICC ||

CBICC || OTIDICC

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 40

5.2 OPACITY with Zero Key Management (ZKM - Optimized)

This protocol is derived from the standard ISO/IEC 24727-3 “EC Key Agreement with ICC Authentication,

Appendix A-1 section A.19”.

This protocol is identified by the OID { iso(1) standard(0) iso24727(24727) part3(3) annex-a(0) protocol(0)

EC-key-agreement-with-ICC-authentication(12) }.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 41

5.2.1 Client Application Protocol Steps

5.2.2 SAM Protocol Steps

Step # Description Comment

Step # Description Comment

A. Ask SAM to generate an ephemeral key pair

B. ICC Authenticate Request

Send IDsH, QeH, CBH

Send ICC Command.

CBH is the Persistent binding control byte for the host.

It is a logical combination of :

- PB: 0x01 Use Persistent binding

- NO_PB: 0x00 No persistent binding for

this host

- PB_INIT 0x02: reset Persistent binding

entry for the host (re-compute ECDH)

- RET_GUID: 0x10 The host is requesting

the encrypted GUID in the ICC

response.

- ONE_SK: 0x20 The host expects a

single session key SK=SKmac =

SKenc=SKrmac

Wait for ICC to respond

Get ICC response: CBICC || NICC || AuthCryptogramICC ||

EncGuid || iccID

CBICC is the Persistent binding control byte for the

ICC. It is a logical combination of

- PB: 0x01 Host was found in ICC PB

registry

- NO_PB: 0x00 No persistent binding for

this ICC

- PB_INIT: 0x02 ICC has set a new

Persistent binding entry for the host (re-

computed ECDH)

- RET_GUID: 0x10 The ICC response

includes the encrypted GUID.

- ONE_SK: 0x20 The host expects a

single session key SK=SKmac =

SKenc=SKrmac

iccID is either the truncated hash of Cicc (PB mode) or

Cicc* otherwise.

C. Determine PB offset based on IDsicc.

Search locally among [PBaddress, IDsicc] records. If

IDsicc is not found, determine best PBaddress value

(first free record slot). Feature can be disabled with

PBaddress = NULL.

D. SAM Authenticate Request

Send CBICC || NICC || AuthCryptogramICC ||

EncGuid || iccID || PBaddress

Send SAM Command. Forward ICC response.

Wait for SAM to respond

Get SAM response: CBH, PBaddress, GUID (if CBH &

RET_GUID) != 0

E. If (CBH & 0x0f) == PB_INIT (Restart OPACITY)

OPACITY-ZKM complete.

F. Use secure messaging with SKMAC and SKENC

for additional commands

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 42

Step # Description Comment

First ephemeral key generation command – may be executed in advance

S1 GEN_KEY_PAIR (deH; QeH)
Return QeH

The SAM generates an EC Key Pair.

Wait for next session key establishment command: CBICC || NICC || AuthCryptogramICC || EncGuid || iccID.

 If (CBICC & 0x0f) == PB If PB bit is not set in CBICC byte

S2. CICC* = iccID; IDsICC = T8(HASH(CICC*)) The ICC returns CICC*. The actual ICC

persistent binding table entry to use is

T8(HASH(CICC*)).

The object (CICC*) returned in iccID is a transformation

of the actual CVC, i.e. (CICC). The TLV data element

(T=0x5F20, L=16, V=GUID) of (CICC) is replaced by

TL, (T=0x5F20, L=0). The signature data element

remains unmodified.

 Else If (CBICC & 0x0f) != PB

S3. IDsICC = iccID; Only the truncated hash of the CVC s returned

S4. Look for IDsICC in PB registry. Check if the ICC is registered as a PB entry.

Determine PBAddress.

` If IDsICC is not registered AND CBICC & 0x0f == PB Registry Inconsistency. The host does not find the

ICC in the PB registry (formerly erased) but ICC is

expecting to be registered. This behavior is normal if

the registry is full or is the policy requires that old

registry records are erased.

S5. Zeroize deH Reset SAM status

S6 return CBH = PB_INIT (Restart OPACITY)

Let client application know it needs to restart the

protocol with CBH = PB_INIT

 If IDsICC is not registered AND (CBICC & PB) != 0 ICC is not expecting the host to have registered it. The

SAM proceeds with a complete EC-based key

agreement

S7. Extract QsICC from CICC and Validate

 QsICC belongs to EC domain.

Extract the static ICC public key from the CVC

S8. Z = EC_DH (deH;QsICC) Compute the shared secret.

S9. Zeroize deH Destroy ephemeral host private key.

 If IDsICC is registered Each side has found the PB entry of the other side.

S10. Obtain Z from IDsICC in PB registry. Read the PB entry indexed with IDsICC

S11. SKCFRM || SKMAC || SKENC || SKRMAC || NextZ =

 KDF (Z, len,info (IDsICC, IDsH , T16(QeH),NICC))

Compute the session keys and Next Z.

NextZ length is 16bytes,

Note that NextZ is only used when the condition (S15):

CBICC == PB_INIT is TRUE. Next Z does not need to

be computed otherwise.

If CBicc & ONE_SK, the computation is as follows:

SKCFRM || SKMAC || NextZ =

 KDF (Z, len,info (IDsICC, IDsH , T16(QeH),NICC))

And SKENC = SKMAC, SKRMAC = SKMAC

S12. Zeroize Z, Destroy Z.

S13. Check (AuthCryptogramICC ==

 C-MAC (SKCFRM, “KC_1_V” || IDsICC || IDsH || T16((QeH))

Check key confirmation cryptogram. Return

authentication error if verification fails.

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 43

Step # Description Comment

If Check Fails return AUTH_ERROR

S14. Zeroize SKCFRM Destroy session key used for key confirmation

 If CBICC == PB_INIT

S15. Register Z=NextZ for IDsICC Create a new PB registry entry. With the shared secret

used f the next transaction. HINT: If the registry is full,

then the oldest or less used records should be

identified and replaced. The internal aging algorithms

are independent from the card interface and outside

the scope of this specification.

 If (CBICC & 0x0F) != NO_PB and (CBH & 0x0F) != NO_PB If ICC is maintaining a record for the host (i.e. CBICC

== PB_INIT or CBICC == PB)

S16. CBH = PB Prepare response to client application: CBH = PB, i.e.

Host has registered ICC in PB table.

 Else ICC is not maintaining a record for the host: no ICC

record shall be stored either.

S17. CBH= NO_PB Prepare response to client application: CBH = NO_PB,

i.e. Host is not registering ICC in PB table

 If CBICC & RET_GUID If the ICC has included an encrypted GUID in the

response

S18 GUID = EncGuid XOR AES(SKENC ,IV)

CBH |= RET_GUID

Decrypt GUID. Indicate that SAM response includes

the GUID. IV is a 16-byte constant known on both

sides.

“0x80 00 .. 00”

S19 Build CICC from CICC* and GUID. S19

Note: the object (CICC*) is a transformation of the

actual CVC, i.e. (CICC). The TLV data element

(T=0x5F20, L=16, V=GUID) of (CICC) is replaced by

TL, (T=0x5F20, L=0). The signature data element

remains unmodified.

S20 Verify CICC signature wth ECDSA

To verify the signature with ECDSA, the SAM must

reconstruct (CICC) from (CICC*) the actual GUID TLV of

the (CICC), L= len(GUID) and V=GUID.

S21 CBH |= RET_GUID

S22 Else GUID = NULL

S23. Return CBH || PBaddress Return PB control byte to client application.

5.2.3 ICC Protocol Steps

Step

Description Comment

C1 IDsICC = T8(HASH(CICC)) Prepare ICC ID value– may be pre-computed

C2. Look for IDsH in PB registry. Look in PB registry for host ID.

 if IDsH is not registered OR (CBH & 0x0F) != PB

If host not found in PB registry, or if host asks ICC

to ignore registry, perform a full EC-based key

agreement.

C3. Validate QeH belongs to EC domain. Check ephemeral public key validity

C4. Z = EC_DH (dsICC;QeH) Compute shared secret

C5. iccID = CICC* ICC identifier returned will be (CICC*), a

transformation of Card Verifiable Credential (CICC)

(CICC). The TLV data element (T=0x5F20, L=16,

V=GUID) of (CICC) is replaced by TL, (T=0x5F20,

L=0). The signature data element remains

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 44

Step

Description Comment

unmodified.

 else Host is found

C6. Read Z from PB registry from IDsH Access shared secret

C7. iccID = IDsICC ; CBICC = PB Return Truncated hash of CVC as identifier.

Prepare ICC control byte response

C8. Generate Nonce NICC

C9. SKCFRM || SKMAC || SKENC || SKRMAC || NextZ =

 KDF (Z, len,info (IDsICC, IDsH , T16(QeH),NICC))

Compute session keys and shared secret for next

session.

Note that NextZ is only used when the condition

(C13):

(ICC supports PB AND CBH != NO_PB AND [IDsH

is not registered OR CBH == PB_INIT]) is TRUE.

Next Z does not need to be computed otherwise.

If CBh & ONE_SK, the computation is as follows:

SKCFRM || SKMAC || NextZ =

 KDF (Z, len,info (IDsICC, IDsH , T16(QeH),NICC))

And SKENC = SKMAC, SKRMAC = SKMAC

And CBicc |= ONE_SK

C10. Zeroize Z Destroy current shared secret.

C11. AuthCryptogramICC =

 C-MAC (SKCFRM , “KC_1_V” || IDsICC || IDsH ||T16(QeH))

Compute key confirmation cryptogram per 800-

56A.

C12. Zeroize SKCFRM Destroy session key sued to compute the KC

cryptogram

 if ICC supports PB AND (CBH & NO_PB) ==0 AND

[IDsH is not registered OR (CBH & PB_INIT)] then

If both host and ICC supports PB, and no record

for the host is present in the ICC registry, or if a

new record is requested for that host.

C13. Register Z=NextZ for IDsH . Register shared secret for next session.

C14. CBICC = PB_INIT Prepare ICC control byte response

 Else If Either Host or ICC does not support PB

C15. CBICC = NO_PB Prepare ICC control byte response

 If CBH & RET_GUID and GUID exists If an encrypted GUID must be returned

C16 EncGuid = GUID XOR AES(SKENC ,IV)

CBICC |= RET_GUID

Encrypt the GUID, i.e., the value V of the GUID

data element 0x5F20 of (CICC). The encryption is

performed with the session key for encryption.

Indicate that the encrypted GUID is present in the

response using CBICC

IV is a 16-byte constant known on both sides.

“0x80 00 .. 00”

 Else

C17 EncGuid = NULL No GUID in the response

C18 Return CBICC || NICC || AuthCryptogramICC || EncGuid || iccID

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 45

6.0 ISO 7816-4 APDU Interface

The following is a 7816-4 card edge interface supporting the OPACITY protocol and recommended for

interoperability. The APDU sequence is for ISO7816 T=0 card in contact mode.

6.1 Host Control Byte (CBH)

• PB: ICC may use Persistent binding if supported

• NO_PB: No persistent binding supported by this host: ICC may not use persistent binding

• PB_INIT: ICC shall reset Persistent binding entry for the host (re-compute ECDH)

• ENC_GUID: ICC includes the encrypted GUID in the response

• CLR_GUID: ICC includes the GUID in the CVC, not encrypted

• ONE_SK: Request ICC to establish only one session key

• THREE_SK: ICC has established Three session keys for Secure Messaging

CBH

encoding

FS

mode

ZKM

Mode

b7

(RFU)

b6 B5 b4 b3

(RFU)

B2 b1 b0

NO_PB Y Y - - - - - - 0 0

PB Y Y - - - - - - 0 1

PB_INIT Y Y - - - - - - 1 0

ENC_GUID N Y - - - 1 - - - -

CLR_GUID N Y - - - 0 - - - -

THREE_SK Y Y - - 0 - - - - -

ONE_SK Y Y - - 1 - - - - -

Opacity

ZKM

N Y 0

Opacity Full

Secrecy

Y N - 1 - - - - - -

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 46

6.2 ICC Control Byte (CB ICC)

• PB: Host was found in ICC PB registry

• NO_PB: Persistent binding has not been used for this transaction

• PB_INIT: ICC has set a new Persistent binding entry for the host (re-computed ECDH)

• ENC_GUID: the encrypted GUID is present in the response

• CLR_GUID. The GUID is returned as part of the CVC

• ONE_SK: ICC has established only one session key for Secure messaging,

• THREE_SK: ICC has established Three session keys for Secure Messaging.

6.3 Cipher Suites Encoding

The protocol can be configured to support the following cipher suites:

FIPS 140-2 modes
Fast ZKM

only
FS/ZKM

Strong Key

transport
Strong FS

Government

Classified

Cipher Suite CS1 CS2 CS3 CS4 CS5

Encoding (P1) 0xE4 0xE8 0xE9 0xEA 0xEB

Channel Strength

(bits) 112 128 192 192 192

Encryption or MAC

(Session keys) AES128 AES128 AES 256 AES 192 AES256

ICC CVC Signature ECDSA 224 ECDSA 256 ECDSA 256 ECDSA 384 ECDSA 384

Host CVC Signature N/A ECDSA 256 ECDSA 384 ECDSA 384 ECDSA 384

ICC Key Agreement ECDH 224 ECDH 256 ECDH 256 ECDH 384 ECDH 384

CBICC

encoding

FS

Mode

ZKM

mode

b7

(RFU)

b6 b5 b4 b3

(RFU)

B2 b1 b0

NO_PB Y Y - - - - - - 0 0

PB Y Y - - - - - - 0 1

PB_INIT Y Y - - - - - - 1 0

ENC_GUID N Y - - - 1 - - - -

CLR_GUID N Y - - - 0 - - - -

THREE_SK Y Y - - 0 - - - - -

ONE_SK Y Y - - 1 - - - - -

Opacity

ZKM

N Y - 0 - - - - - -

Opacity Full

Secrecy

Y N - 1 - - - - - -

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 47

Host Key Agreement ECDH 224 ECDH 256 ECDH 384 ECDH 384 ECDH 384

Hashing SHA 1 SHA 256 SHA 384 SHA 384 SHA 384

Nonces (per 800-56A) 16 bytes 16 bytes 24 bytes 24 bytes 32 bytes

6.4 OPACITY FS mode

Command Response Comments

Authenticate Host (SAM)

to ICC

 Command sent to ICC

00.86.P1.P2.LL { CBH || CH ||

QeH }

GENERAL AUTHENTICATE

Where:

P1 = cipher suite (see section 6.3)

P2 = Opacity ICC Private Key dsICC

reference or 0x00 if implicit

CBH encoding: see section 6.1

- CH is a self descriptive ICC CVC as

defined in 7816-8 Annex B.2:

{42 - L - Issuer identification number} -

{'5F20' - L -ICCholder name} - {'5F49' - L -

ICCholder public key} {'5F37' - L - Digital

signature}

- QeH is a public EC key (QeH is NULL for

base Opacity)

 CBICC || OpaqueDataICC ||

AuthCryptogramICC || OTIDICC

Where if CBICC == NO_PB or PB_INIT:

- OpaqueDataICC = CVC encrypted

with K1

- OTIDICC = QeICC

if CBICC == PB:

- OpaqueDataICC = Nicc (16bytes)

- OTIDICC = result of KDF.

AuthCryptogramICC result of Key

Confirmation computation

Authenticate ICC to SAM

(Host)

 Command sent to SAM

00.86.P1.P2.LL { CBICC ||

OpaqueDataICC ||

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 48

Command Response Comments

AuthCryptogramICC ||
OTIDICC || PBaddress }

GENERAL AUTHENTICATE

Where:

P1 = cipher suite (see section 6.3)

P2 = Opacity SAM Private Key dsH

reference or 0x00 if implicit

CBICC encoding: See section 6.2

Where if CBICC == NO_PB or PB_INIT:

- OpaqueDataICC = CVC encrypted

with K1

- OTIDICC = QeICC

if CBICC == PB:

- OpaqueDataICC = Nicc (16bytes)

- OTIDICC = result of ICC KDF.

- AuthCryptogramICC result of Key

Confirmation computation

 CBH || OTIDICC || PBaddress

CBH encoding: see section 6.1

A secure channel with

SKmac & SKenc is now

available; The host may use

this channel to perform

additional transaction steps.

For instance it may send an

acknowledgement to the ICC

that IccData has been

processed successfully.A

Wrap command APDU with

SAM

 Command sent to SAM

CLA.87.P1.P2.LL { 81. LL.

Command-APDU-to-wrap }

 CLA = ‘0x00’ or ‘0x10’

When command is chained or not.

P1 = Command APDU wrapping

cryptographic mechanism.

P2: 0x00. key reference qualifier. The

available session keys are used to wrap the

APDU

Command-APDU-to-wrap: GA Challenge

Note the wrapping command shall maintain

and update the single SM

wrapping/unwrapping context associated to

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 49

Command Response Comments

the P2 key reference.

For instance, the wrapping command shall

interpret and use the CLA byte of the

command to determine if there are more

chained commands to follow. It also

analyzes the expected response length to

support the subsequent unwrapping

commands. Similarly, the unwrapping

command shall interpret the SM context to

determine if additional response bytes are

expected.

If any error or inconsistency occurs, the SM

context shall be reset.

 82. LL. Wrapped-command

APDU }

Wrapped-command-APDU: GA Response

Send wrapped APDU Command sent to ICC

Wrapped APDU Wrapped response

Unwrap response APDU

with SAM

 Command sent to SAM

CLA.87.P1.P2.LL { 81. LL.

Response-APDU-to-unwrap }

 CLA = ‘0x00’ or ‘0x10’

When command is chained or not.

P1: Response APDU unwrapping

cryptographic mechanism (Secure

Messaging).

P2: 0x00. key reference qualifier. The

available session keys are used to wrap the

APDU

Response-APDU-to-unwrap. GA Response.

Note the unwrapping command shall

maintain and update the single SM

wrapping/unwrapping context associated to

the P2 key reference.

For instance, the wrapping command shall

interpret and use the CLA byte of the

command to determine if there are more

chained commands to follow. It also

analyzes the expected response length to

support the subsequent unwrapping

commands. Similarly, the unwrapping

command shall interpret the SM context to

determine if additional response bytes are

expected.

If any error or inconsistency occurs, the SM

context shall be reset.

 81.LL.Unwrapped response Unwrapped response: GA Response

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 50

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 51

6.5 OPACITY ZKM mode

Command

Response Comments

Authenticate Host – ICC

Command

00.86. P1.P2 { CBH || IDsH || QeH

}

GENERAL AUTHENTICATE

Where:

P1 = cipher suite (see section 6.3)

P2 = Opacity ICC Private Key dsICC

reference or 0x00 if implicit

CBH encoding: see section 6.1

- IDsH is a 8 bytes Host identifier.

- QeH is a public EC key

` CBICC || NICC ||

AuthCryptogramICC || EncGuid

|| iccID

Where:

- NICC is a 16-byte nonce

- AuthCryptogramICC is a 16 byte binary

string.

- CBICC indicates how the Persistent binding

was executed on the card. See section 6.2

.

- iccID is either:

 CICC* when CBICC & NO_PB or CBICC &

PB_INIT:

, i.e. a self descriptive ICC CVC as defined

in 7816-8 Annex B.2, And in ANNEX B of

this document.

(T8(HASH(CICC)) when CBICC == PB:

Authenticate ICC to SAM

(Host)

00.86.P1.00.LL { CBICC || NICC ||

AuthCryptogramICC || EncGuid ||

iccID || PBaddress

}

GENERAL AUTHENTICATE

Where:

P1 = cipher suite (see section 6.3)

CBICC encoding: See section 6.2

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 52

.

iccID = CICC*

if CBICC == PB:

Truncated Hash (leftmost 8 bytes of CVC

hash)

AuthCryptogramICC result of Key

Confirmation computation

- EncGuid is a 16 byte cryptogram, only present if

RET_GUID is set in CBICC. Otherwise EncGuid is

NULL.

- PBaddress: table entry number (2 bytes).

If PBaddress=0x0000, no entry is created.

PBaddress=0x0001 first entry in table

PBaddress=0x0002 second entry in table

 CBH || PBaddress || GUID

CBH encoding:

- PB: 0x01 Use Persistent binding

- NO_PB: 0x00 No persistent binding for

this host

- PB_INIT 0x02: reset Persistent binding

entry for the host (re-compute ECDH)

- RET_GUID: 0x10 The host is requesting

the encrypted GUID in the ICC response.

- ONE_SK: 0x20. Only one secure

messaging session key is derived with KDF.

 PBaddress: table entry number (2 bytes).

If PBaddress=0x0000, no entry is created.

PBaddress=0x0001 first entry in table

PBaddress=0x0002 second entry in table

GUID: (16bytes)

Client application Verifies

SAM Response

 A secure channel with SKmac & SKenc is

now available; The host may use this

channel to perform additional transaction

steps. For instance it may send an

acknowledgement to the ICC that IccData

has been processed successfully.

Wrap command APDU with

SAM

 Command sent to SAM

CLA.87.P1.P2.LL { 81. LL.

Command-APDU-to-wrap }

 CLA = ‘0x00’ or ‘0x10’

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 53

 When command is chained or not.

P1 = Command APDU wrapping

cryptographic mechanism.

P2: 0x00. key reference qualifier. The

available session keys are used to wrap the

APDU

Command-APDU-to-wrap: GA Challenge

Note the wrapping command shall maintain

and update the single SM

wrapping/unwrapping context associated to

the P2 key reference.

For instance, the wrapping command shall

interpret and use the CLA byte of the

command to determine if there are more

chained commands to follow. It also

analyzes the expected response length to

support the subsequent unwrapping

commands. Similarly, the unwrapping

command shall interpret the SM context to

determine if additional response bytes are

expected.

If any error or inconsistency occurs, the SM

context shall be reset.

 82. LL. Wrapped-command

APDU }

Wrapped-command-APDU: GA Response

Send wrapped APDU Command sent to ICC

Wrapped APDU Wrapped response

Unwrap response APDU with

SAM

 Command sent to SAM

CLA.87.P1.P2.LL { 81. LL.

Response-APDU-to-unwrap }

 CLA = ‘0x00’ or ‘0x10’

When command is chained or not.

P1: Response APDU unwrapping

cryptographic mechanism (Secure

Messaging).

P2: 0x00. key reference qualifier. The

available session keys are used to wrap the

APDU

Response-APDU-to-unwrap. GA Response.

Note the unwrapping command shall

maintain and update the single SM

wrapping/unwrapping context associated to

the P2 key reference.

For instance, the wrapping command shall

interpret and use the CLA byte of the

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 54

command to determine if there are more

chained commands to follow. It also

analyzes the expected response length to

support the subsequent unwrapping

commands. Similarly, the unwrapping

command shall interpret the SM context to

determine if additional response bytes are

expected.

If any error or inconsistency occurs, the SM

context shall be reset.

 81.LL.Unwrapped response Unwrapped response: GA Response

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 55

7.0 ANNEX A - KDF Specifications

The Key Derivation Function is the concatenation KDF as specified in NIST SP800-56A (§ 5.8.1).

Note that SP800-108 KDF would have been an alternate choice for the successive KDFs following the first

800-56A KDF, and in particular of session keys from NextZ.

KDF takes as input a shared secret Z, total session key data length ‘len’ and supplementary data ‘info’, and

produces session keys SK1 || .. || SKp as follows:

SK1 || .. || SKp = KDF (Z, len, info(A1, .. Am))

Where:

info (A1, .. Am) = AlgoID(SK1) || .. || AlgoID(SKp) || A1 || .. || Am

len = Length(SK1) + .. + Length(SKp)

n = len / (hashLengthInBits (KDFHashAlgorithm))

DerivedKeyingMaterial =

KDFHashAlgorithm (0x00000001 || Z || info) ||

KDFHashAlgorithm (0x00000002 || Z || info) || ..

KDFHashAlgorithm (0x00000000 + n) || Z || info)

The resulting concatenated session keys (SK1 || .. || SKp) are the (len) left-most bits from

DerivedKeyingMaterial.

Algo ID Value Note

AES 128 key 0x09 800-78-1

AES 192 key 0x0B 800-78-1

AES 256 key 0x0D 800-78-1

OTID 0xF0

NextZ 0xF1

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 56

8.0 ANNEX B - CVC Specifications

The Card Verifiable Credential Format used in this specification is as follows:

Tag Length (BER-

TLV format)

Name Value and Description

0x5F29 0x01 Credential Profile

Identifier

0x80 (for this version)

0x42 0x08 (Certificate) Issuer

Identification Number
IIN (8bytes) : IssuerID (6 bytes) || IssuerKeyID (2

bytes)

IssuerID: 6 bytes for Issuer id - e.g. 6 leftmost bytes

of hash (SHA-256) of unique issuer name or fixed

value chosen at random at setup time -.

IssuerKeyID: 2 bytes for CVC signature verification

public key number.

0x5F20 L1 (should not

exceed 0x10)

Globally Unique

IDentifier (GUID)

Application Specific, Identifies the card or

cardholder.

0x7F49 L2

P-224:

2+5+2+57= 0x42

(66)

P-256:

2+8+2+65=

0x4D (77)

P-384:

2+8+2+97=0x6D

(109)

CardHolderPublicKey Data Object with the following tags:

- 0x06: Object Identifier of the
algorithm. Possible values are:

� 0x2B81040021 for
secp224r1 {iso(1) identified-
organization(3)
certicom(132) curve(0)
ansip224r1(33)} algorithm

� 0x2A8648CE3D030107 for
Prime256v1 {iso(1)
member-body(2) us(840)
ansi-x962(10045) curves(3)
prime(1) prime256v1(7)}
algorithm

� 0x2B81040022 for
ansiX9p384r1 ::= { iso(1)

identified-organization(3)

certicom(132) curve(0) 34 }
- 0x86: Public Key coded as follows:

04 || X || Y, where X and Y are the
coordinates of the point on the curve.

0x5F37 L3

ECDSA with SHA-

224:

ECDSA with SHA-

256: 0x37 (55)

ECDSA with SHA-

384:

DigitalSignature DigitalSignature ::= SEQUENCE {

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING

}

Where

− signatureAlgorithm is ecdsa-with-SHA1(1)

(iso(1) member-body(2) us(840) ansi-

x962(10045) signatures(4)ECDSA with SHA-224:
1.2.840.10045.4.3.1

− ECDSA with SHA-256: 1.2.840.10045.4.3.2

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 57

− ECDSA with SHA-384: 1.2.840.10045.4.3.3

− signatureValue is a BITSTRING encoding of

signature result ECDSA-Sig-Value defined

below.
ECDSA-Sig-Value ::= SEQUENCE {

 r INTEGER,

 s INTEGER

}

AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm

OPTIONAL

}

The verification public key is referenced with the

IssuerID Data Element.

0x5F4C 0x01 RoleIdentifier For root certificates:

b8b7b6b5b4b3b2b1

0 0 x 1 - - - - Key assigned to card app.

0 0 1 x - - - - Key assigned to client app.

- - - - 0 0 0 1 Verification key

- - - - 0 0 1 0 Authentication Key

Card application root CVC role ID: 0x12

Client application root CVC role ID: 0x22

For cardholder certificates:

‘0x00’ : for card application key CVC

‘0x80’ : for card application administrator key CVC

’0x01’: for client application key CVC

Open P ro toco l fo r Access Cont ro l Ident i f i ca t i on and T icket ing wi t h pr i vacy – Spec i f i ca t ions v3 .7

 58

.

9.0 ANNEX C – Advanced Opacity Implementation

This section describes how to implement the client application interface to a SAM.

9.1 Large PB registries for SAMs

When the persistent binding registry has many records (>100), the time necessary to locate the PB record
address from the ICC identifier (IDsICC for ZKM and NextOTID for FS) can be prohibitive.
In such a situation, it is preferable to implement the indexation mechanism on the client application instead
of the SAM.

The principle is as follows.
- During the first OPACITY transaction between a ICC and a SAM, the SAM registers the PB record
assigned the ICC and returns the PB record address (PBaddress) and the next ICC identifier (IDsICC for
ZKM and NextOTID for FS) to the client application.

- The client application maintains in a persistent local index table the association (next ICC identifier,
PBaddress).

- During the following transactions between the same ICC and the same SAM, the client application first
checks if the ICC (IDsICC for ZKM or OTID for FS) is already registered in the persistent local index table
and in which case it obtains PBaddress. PBaddress is then transmitted to the SAM for direct access to
the PB record (shared secret Z, etc,) If there is no persistent binding record for the ICC, a Full OPACITY
transaction is requested.

9.2 Multiple CVC signing keys

Multiple signers of CVCs are supported in the OPACITY specification.

The recommended method is to reserve the rightmost two bytes in the IIN data element (Tag: 0x42h, Length:

0x08h) of the CVC as a reference to a particular CVC verification public key.

When CVC verification public keys are registered in the SAM or ICCs they must be associated to those two

bytes.

