

# **PIV in EPACS Vn. 3.0 PACS Threat vectors**

Lars R. Suneborn Smart Card Alliance

# The starting point













## **Common PACS threats**

Credential

- Inadequate identity proofing policies
- Non-standardized issuance policies
- Non-standardized appearance
- Visual Credential counterfeiting
- Electronic credential counterfeiting
- Social Engineering
- Identifier collision

PACS manipulation

- Reader manipulation, replacement
- Communication line
- Controller manipulation, replacement
- Social Engineering
- PACS Operator



## **Credentialing Process - Policy**

- Applicant
  - Photo,
  - Biometric
  - Breeder Documents
- Issuer
  - Sponsor, Registrar
  - Background investigation



# High Assurance Credential - Policy

## Adjudication



# Data model, Pre-personalization, Production, Issuance, Key creation



# Graphic personalization visual counterfeit countermeasures





#### Level 1 Security

- Naked eye
- Standardized design
- Exact and consistent appearance





#### Level 2 Security

- Requires trained people, simple equipment
- Hologram, ghost image
- May use special print techniques









#### Level 3 Security

- Specialist examination
- Specialized print equipment
- Specialized inspection equipment
- Microtext
- Optically variable images

May not be an attack attempt

- An identifier collision occurs when the identifier used by the PACS is present in more than one card.
- NIST SP 800-73-4 2<sup>nd</sup> Public Draft mandates the use of the UUID (RFC 4122) for the Card Identifier for PIV

- PACS must process the full identifier
- Registration process must validate identifier origin

# **Electronic counterfeiting**

Attack method

- Attacker obtains a card and makes a copy of it, then uses it to gain access.
- Attacker substitutes data object on valid card.



- Use card authentication (PKI-Auth or PKI-CAK).
- Verify the security object on the card
- Authenticate another object on the card in addition to the biometric and verify that the identifiers for both objects are the same.

# Social Engineering - Use of unreported lost or stolen card

Attack method

- Attacker persuades a cardholder to give them possession of the card.
- Attacker steals or finds a card and uses it to gain access, before it is reported lost or stolen.

- Use an authentication mechanism that requires PIN or biometric verification of user's identity.
- Establish a policy and process for reporting & de-provisioning lost/stolen cards.

## Reader compromise, replacement



#### Attack method

 Attacker inserts device at the PACS reader to capture & replay information from the reader that can be used to gain access.

- Use PKI-CAK or PKI-Auth
- Tamper detection
- Video activation
- Maintenance policies

## Physical PACS component compromise



#### Attack method

- Attacker tampers with PACS components directly to gain access
- Attacker keeps the door from closing properly

- Protect all PACS components with tamper detection
- Door position sensor
- Exit device
- Keep in secure area

## PACS Threat - Insider attack







#### Attack methods

- Attacker reprograms PACS polices
  Access rights, Intrusion detection, video
- Attacker reprograms authorization for cohort or own authority
- Attacker harvest identifiers of PACS user
  database
- Attacker creates a factious user

- PACS Operators role definition
- Use same level authentication as required for physical access
- Encrypt PACS user records
- Control non-PIV visitor cards
- Log all operator activity

# **PACS Threat - Server impersonation**

## **Attack Method**

 Attacker substitutes server with non-authentic server to manipulate controller database, or stored policies

- Encryption of data transmitted over server-controller communication line
- Communication line supervision



# **PACS Threat - controller impersonation**

#### **Attack Method**

 Attacker substitutes controller to manipulate devices connected to authentic controller

- Encryption of data transmitted over server-controller communication line
- Communication line supervision
- Hardware library with unique device ID
- Device network log-on only through authentic server



## PACS Threat - Insider attack; trust anchor

#### **Attack Method**

 Operator modifies trust store to accept bad CA

- Operator role definition
- Log all operator activities
- Personnel security policies



## PACS Threat - Denial of Service attack

## **Attack Method**

- Attacker disables external network connection to prevent CRL update
- Allow access to bearer of revoked credential

- Cache validation status in local PACS
- Supervise all communication lines; alert when connectivity is lost.



# Policy OID

- Commonly, you might think of the following names for policies
- 'rudimentary' or 'basic' (providing very little confidence the certificate holder is who they say they are)
- to 'PIV' or 'PIV-I' (a very high level of confidence)
- For Cassidian Communications' CA, PIV-I is identified as
- 1.3.6.1.4.1.16304.3.6.2.20

| Certificate                                  |                                              |                           | 0 10                       | 8.6.         | X |  |  |  |  |
|----------------------------------------------|----------------------------------------------|---------------------------|----------------------------|--------------|---|--|--|--|--|
| General                                      | Details Certification Path                   |                           |                            |              |   |  |  |  |  |
| Show                                         | <all></all>                                  |                           | •                          |              |   |  |  |  |  |
| Field                                        |                                              |                           | Value                      |              |   |  |  |  |  |
| 📑 Sig                                        | nature ha                                    | ash algorithm             | sha256                     |              |   |  |  |  |  |
| 📑 Iss                                        | uer                                          |                           | ccCA1, Certification Auth  |              |   |  |  |  |  |
| 📑 Val                                        | id from                                      |                           | Thursday, January 17, 20 📃 |              |   |  |  |  |  |
| 🔄 🔄 Val                                      | id to                                        |                           | Sunday, January 17, 201    |              |   |  |  |  |  |
| Sut                                          | oject                                        |                           | Stephen Howard - ID, 42    |              |   |  |  |  |  |
| Pub 🗐 Pub                                    | olic key                                     |                           | RSA (2048 Bits)            |              |   |  |  |  |  |
| 🚛 Enł                                        | nanced Ke                                    | ey Usage                  | Client Authentication (1.3 |              |   |  |  |  |  |
| Cer                                          | tificate P                                   | olicies                   | [1]Certificate Policy:P    | olic         | - |  |  |  |  |
|                                              |                                              |                           |                            |              |   |  |  |  |  |
| Policy Identifier=1.3.6.1.4.1.16304.3.6.2.8  |                                              |                           |                            |              |   |  |  |  |  |
| Poli                                         | Policy Identifier=1 3 6 1 4 1 16304 3 6 2 10 |                           |                            |              |   |  |  |  |  |
| [5]Cert                                      | [5]Certificate Policy:                       |                           |                            |              |   |  |  |  |  |
| Poli                                         | Policy Identifier=1.3.6.1.4.1.16304.3.6.2.11 |                           |                            |              |   |  |  |  |  |
| Poli                                         | cv Identif                                   | biicy:<br>fier=1.3.6.1.4. | 1.16304.3.6.2.12           |              |   |  |  |  |  |
| [7]Certificate Policy:                       |                                              |                           |                            |              |   |  |  |  |  |
| Policy Identifier=1.3.6.1.4.1.16304.3.6.2.20 |                                              |                           |                            |              |   |  |  |  |  |
|                                              |                                              |                           | Edit Properties            | Copy to File | e |  |  |  |  |
| Learn more about certificate details         |                                              |                           |                            |              |   |  |  |  |  |
|                                              |                                              |                           |                            |              |   |  |  |  |  |
| ОК                                           |                                              |                           |                            |              |   |  |  |  |  |



## Threats & Countermeasures guidance

|               | s       | ecures aga                |                     |                   |        |                 |                             |
|---------------|---------|---------------------------|---------------------|-------------------|--------|-----------------|-----------------------------|
| Auth Modes 🕹  | Revoked | Counterfeit<br>or Altered | Copied or<br>Cloned | Lost or<br>Stolen | Shared | Auth<br>Factors | SP 800-116<br>Security Area |
| Chip Serial # |         |                           |                     |                   |        | None            | Uncontrolled                |
| FASC-N/UUID   | Local   |                           |                     |                   |        | None            | Uncontrolled                |
| CHUID+VIS     | ~       | ✓                         |                     |                   |        | 1               | Controlled                  |
| PKI-CAK       | ✓       | ✓                         | ✓                   |                   |        | 1               | Controlled                  |
| PKI-AUTH      | ~       | ~                         | ~                   | ✓                 |        | 2               | Limited                     |
| PKI-AUTH+BIO  | ✓       | ✓                         | ✓                   | ✓                 | ~      | 3               | Exclusion                   |

- Performing signature checks and private key challenges at enrollment is not sufficient to achieve these levels of assurance. They must be done at the time-of-access.
- Revocation checking for FASC-N and CHUID modes must be done using the PIV authentication certificate.



## SUMMARY

- When properly used, PIV & E-PACS:
  - Enforces proper identity vetting and issuance policies
  - Validation of trusted origin
  - Mitigate common threat vectors through electronic authentication
- Detects:
  - Non -compliant id vetting and issuance policies
- Prevents:
  - Use of valid credential by non-owner
  - Use of revoked credential
  - Use of Forged or duplicated identifier
- Expanding beyond U.S.

## Summary

- Complexities requires new competencies, certified system integrators
  - GSA lead in guiding & enhancing competencies
- Is FICAM E-PACS IT or Security
- GSA editing Schedule 70 SIN 132-62 and creating SIN 162-64 to simplify procurement (and selling) FICAM E-PACS components and services







# Thank You!

Lars R. Suneborn, CSCIP/G; CSEIP Director, Training Programs Smart Card Alliance Phone M: 1 703) 904 2389 Phone O: 1 703) 794 7552 E-Mail: Lsuneborn@smartcardalliance.org

